p42
#getwd()
#setwd("../chapter02/")
# http://faculty.marshall.usc.edu/gareth-james/ISL/bios.html
x <- c(1,3,2,5) # Vector
x
## [1] 1 3 2 5
x = c(1,6,2)
y = c(1,4,3)
length(x)
## [1] 3
length(y)
## [1] 3
ls() # List all objects
## [1] "x" "y"
rm(list = ls()) # Remove all objects
#?matrix
x = matrix(data=c(1,2,3,4), nrow = 2, ncol = 2)
x
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
x = matrix(c(1,2,3,4), 2, 2)
x
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
matrix(c(1,2,3,4), 2, 2, byrow = TRUE)
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
sqrt(x)
## [,1] [,2]
## [1,] 1.000000 1.732051
## [2,] 1.414214 2.000000
x = rnorm(50)
y = x + rnorm(50, mean = 50, sd = .1)
y
## [1] 50.61508 49.78288 49.98360 52.24826 50.72951 48.92897 49.82495 50.03336
## [9] 49.90008 51.32371 50.38523 47.90603 50.79670 48.46852 50.07275 50.36893
## [17] 50.89561 49.58554 50.64008 50.51077 51.49055 50.69971 50.47124 52.45478
## [25] 49.99722 50.48574 49.22556 50.69357 49.63148 51.42444 50.24742 50.47353
## [33] 49.77522 49.64214 49.09333 50.51206 49.58210 50.76035 50.76565 50.50143
## [41] 50.16230 50.69265 48.19904 52.20604 51.39416 52.11487 49.33432 49.65721
## [49] 49.06231 47.82384
cor(x,y)
## [1] 0.9951339
set.seed(1303) # Produce same random results by initializing the seed.
rnorm(50) # First 50
## [1] -1.1439763145 1.3421293656 2.1853904757 0.5363925179 0.0631929665
## [6] 0.5022344825 -0.0004167247 0.5658198405 -0.5725226890 -1.1102250073
## [11] -0.0486871234 -0.6956562176 0.8289174803 0.2066528551 -0.2356745091
## [16] -0.5563104914 -0.3647543571 0.8623550343 -0.6307715354 0.3136021252
## [21] -0.9314953177 0.8238676185 0.5233707021 0.7069214120 0.4202043256
## [26] -0.2690521547 -1.5103172999 -0.6902124766 -0.1434719524 -1.0135274099
## [31] 1.5732737361 0.0127465055 0.8726470499 0.4220661905 -0.0188157917
## [36] 2.6157489689 -0.6931401748 -0.2663217810 -0.7206364412 1.3677342065
## [41] 0.2640073322 0.6321868074 -1.3306509858 0.0268888182 1.0406363208
## [46] 1.3120237985 -0.0300020767 -0.2500257125 0.0234144857 1.6598706557
rnorm(50) # Next 50
## [1] 1.00185188 0.26300143 -0.02835910 -0.55625904 -0.11956114 -1.03629594
## [7] -0.65663801 0.53071490 0.11239650 -2.07756129 0.42047788 0.34127692
## [13] -1.11146959 0.84377453 -0.85525778 2.24788116 -1.37211474 0.93599500
## [19] 0.54973757 0.51758744 -0.56054669 -0.63876770 -0.06500831 0.37530956
## [25] 1.30692614 -0.61058086 0.32282993 1.75126495 1.55928971 0.64713105
## [31] -1.93202340 -0.96938200 1.00148882 0.15220012 -0.04515586 -0.50296757
## [37] -0.25911284 1.01738122 -1.72582568 0.93284077 0.02782077 1.58725296
## [43] 0.23574669 -0.21068373 -0.16983068 0.76280099 0.43017948 1.37181976
## [49] 1.57143594 0.13737399
set.seed(3) # Matches book
y=rnorm(100)
mean(y)
## [1] 0.01103557
var(y)
## [1] 0.7328675
sqrt(var(y)) # sd()
## [1] 0.8560768
sd(y)
## [1] 0.8560768
x=rnorm(100)
y=rnorm(100)
plot(x,y, xlab = "x-axis", ylab = "y-axis", main = "Title")
pdf("Figure.pdf") # Filename
plot(x,y,col="green")
dev.off()
## quartz_off_screen
## 2
x = seq(1,10)
x
## [1] 1 2 3 4 5 6 7 8 9 10
x = 1:10
x
## [1] 1 2 3 4 5 6 7 8 9 10
x = seq(-pi,pi, length = 50)
x
## [1] -3.14159265 -3.01336438 -2.88513611 -2.75690784 -2.62867957 -2.50045130
## [7] -2.37222302 -2.24399475 -2.11576648 -1.98753821 -1.85930994 -1.73108167
## [13] -1.60285339 -1.47462512 -1.34639685 -1.21816858 -1.08994031 -0.96171204
## [19] -0.83348377 -0.70525549 -0.57702722 -0.44879895 -0.32057068 -0.19234241
## [25] -0.06411414 0.06411414 0.19234241 0.32057068 0.44879895 0.57702722
## [31] 0.70525549 0.83348377 0.96171204 1.08994031 1.21816858 1.34639685
## [37] 1.47462512 1.60285339 1.73108167 1.85930994 1.98753821 2.11576648
## [43] 2.24399475 2.37222302 2.50045130 2.62867957 2.75690784 2.88513611
## [49] 3.01336438 3.14159265
y=x
f=outer(x,y,function(x,y) cos(y) / (1+x^2))
contour(x,y,f)
contour(x,y,f,nlevels = 45, add = T)
fa = (f-t(f))/2
contour(x,y,fa,nlevels = 15)
image(x,y,fa)
persp(x,y,fa)
persp(x,y,fa,theta = 30)
persp(x,y,fa,theta = 30, phi = 20)
persp(x,y,fa,theta = 30, phi = 70)
persp(x,y,fa,theta = 30, phi = 40)
p47
A = matrix(1:16,4,4)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 5 9 13
## [2,] 2 6 10 14
## [3,] 3 7 11 15
## [4,] 4 8 12 16
A[2,3]
## [1] 10
A[c(1,3),c(2,4)] # rows 1 and 3 intersect with columns 2 and 4
## [,1] [,2]
## [1,] 5 13
## [2,] 7 15
A[c(1:3),c(2:4)] #
## [,1] [,2] [,3]
## [1,] 5 9 13
## [2,] 6 10 14
## [3,] 7 11 15
A[1:2,]
## [,1] [,2] [,3] [,4]
## [1,] 1 5 9 13
## [2,] 2 6 10 14
A[1,]
## [1] 1 5 9 13
A[-c(1,3),] # Exclude rows 1,3
## [,1] [,2] [,3] [,4]
## [1,] 2 6 10 14
## [2,] 4 8 12 16
A[-c(1,3),-c(1,3,4)] # Exclude rows 1,3 and columns 1,3,4
## [1] 6 8
dim(A)
## [1] 4 4
# Loads it incorrectly
Auto = read.table("../input/Auto.data", stringsAsFactors = TRUE)
# fix(Auto) # X not working on Mac
# Loads it correctly
Auto = read.table("../input/Auto.data", header = T, na.strings = "?")
Auto = read.csv("../input/Auto.csv", header = T, na.strings = "?", stringsAsFactors = TRUE)
dim(Auto)
## [1] 397 9
Auto[1:4,] # First four rows
## mpg cylinders displacement horsepower weight acceleration year origin
## 1 18 8 307 130 3504 12.0 70 1
## 2 15 8 350 165 3693 11.5 70 1
## 3 18 8 318 150 3436 11.0 70 1
## 4 16 8 304 150 3433 12.0 70 1
## name
## 1 chevrolet chevelle malibu
## 2 buick skylark 320
## 3 plymouth satellite
## 4 amc rebel sst
names(Auto) # column names
## [1] "mpg" "cylinders" "displacement" "horsepower" "weight"
## [6] "acceleration" "year" "origin" "name"
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.3
##
## Attaching package: 'ISLR'
## The following object is masked _by_ '.GlobalEnv':
##
## Auto
plot(Auto$cylinders, Auto$mpg, xlim=c(0,10), ylim=c(0,100))
attach(Auto) # Now Auto dataframe is implied
## The following object is masked from package:ggplot2:
##
## mpg
plot(Auto$cylinders, Auto$mpg, xlim=c(0,10), ylim=c(0,100))
cylinders = as.factor(Auto$cylinders)
# We now get a boxplot because x-axis is categorical
plot(cylinders, mpg)
plot(cylinders, mpg, col="red")
plot(cylinders, mpg, col="red", varwidth=T)
plot(cylinders, mpg, col="red", varwidth=T, horizontal=T) # Flip x and y axis
plot(cylinders, mpg, col="red", varwidth=T, xlab="cylinders", ylab="MPG")
mpg
## [1] 18.0 15.0 18.0 16.0 17.0 15.0 14.0 14.0 14.0 15.0 15.0 14.0 15.0 14.0 24.0
## [16] 22.0 18.0 21.0 27.0 26.0 25.0 24.0 25.0 26.0 21.0 10.0 10.0 11.0 9.0 27.0
## [31] 28.0 25.0 25.0 19.0 16.0 17.0 19.0 18.0 14.0 14.0 14.0 14.0 12.0 13.0 13.0
## [46] 18.0 22.0 19.0 18.0 23.0 28.0 30.0 30.0 31.0 35.0 27.0 26.0 24.0 25.0 23.0
## [61] 20.0 21.0 13.0 14.0 15.0 14.0 17.0 11.0 13.0 12.0 13.0 19.0 15.0 13.0 13.0
## [76] 14.0 18.0 22.0 21.0 26.0 22.0 28.0 23.0 28.0 27.0 13.0 14.0 13.0 14.0 15.0
## [91] 12.0 13.0 13.0 14.0 13.0 12.0 13.0 18.0 16.0 18.0 18.0 23.0 26.0 11.0 12.0
## [106] 13.0 12.0 18.0 20.0 21.0 22.0 18.0 19.0 21.0 26.0 15.0 16.0 29.0 24.0 20.0
## [121] 19.0 15.0 24.0 20.0 11.0 20.0 21.0 19.0 15.0 31.0 26.0 32.0 25.0 16.0 16.0
## [136] 18.0 16.0 13.0 14.0 14.0 14.0 29.0 26.0 26.0 31.0 32.0 28.0 24.0 26.0 24.0
## [151] 26.0 31.0 19.0 18.0 15.0 15.0 16.0 15.0 16.0 14.0 17.0 16.0 15.0 18.0 21.0
## [166] 20.0 13.0 29.0 23.0 20.0 23.0 24.0 25.0 24.0 18.0 29.0 19.0 23.0 23.0 22.0
## [181] 25.0 33.0 28.0 25.0 25.0 26.0 27.0 17.5 16.0 15.5 14.5 22.0 22.0 24.0 22.5
## [196] 29.0 24.5 29.0 33.0 20.0 18.0 18.5 17.5 29.5 32.0 28.0 26.5 20.0 13.0 19.0
## [211] 19.0 16.5 16.5 13.0 13.0 13.0 31.5 30.0 36.0 25.5 33.5 17.5 17.0 15.5 15.0
## [226] 17.5 20.5 19.0 18.5 16.0 15.5 15.5 16.0 29.0 24.5 26.0 25.5 30.5 33.5 30.0
## [241] 30.5 22.0 21.5 21.5 43.1 36.1 32.8 39.4 36.1 19.9 19.4 20.2 19.2 20.5 20.2
## [256] 25.1 20.5 19.4 20.6 20.8 18.6 18.1 19.2 17.7 18.1 17.5 30.0 27.5 27.2 30.9
## [271] 21.1 23.2 23.8 23.9 20.3 17.0 21.6 16.2 31.5 29.5 21.5 19.8 22.3 20.2 20.6
## [286] 17.0 17.6 16.5 18.2 16.9 15.5 19.2 18.5 31.9 34.1 35.7 27.4 25.4 23.0 27.2
## [301] 23.9 34.2 34.5 31.8 37.3 28.4 28.8 26.8 33.5 41.5 38.1 32.1 37.2 28.0 26.4
## [316] 24.3 19.1 34.3 29.8 31.3 37.0 32.2 46.6 27.9 40.8 44.3 43.4 36.4 30.0 44.6
## [331] 40.9 33.8 29.8 32.7 23.7 35.0 23.6 32.4 27.2 26.6 25.8 23.5 30.0 39.1 39.0
## [346] 35.1 32.3 37.0 37.7 34.1 34.7 34.4 29.9 33.0 34.5 33.7 32.4 32.9 31.6 28.1
## [361] 30.7 25.4 24.2 22.4 26.6 20.2 17.6 28.0 27.0 34.0 31.0 29.0 27.0 24.0 36.0
## [376] 37.0 31.0 38.0 36.0 36.0 36.0 34.0 38.0 32.0 38.0 25.0 38.0 26.0 22.0 32.0
## [391] 36.0 27.0 27.0 44.0 32.0 28.0 31.0
hist(mpg)
hist(mpg, col=2) # 2 = red
hist(mpg, col=2, breaks = 15)
# pairs() scatterplot
pairs(Auto) # ???
pairs(~ mpg + displacement + horsepower + weight + acceleration, Auto)
{plot(horsepower, mpg)
identify(horsepower, mpg, name)
}
## integer(0)
summary(Auto)
## mpg cylinders displacement horsepower weight
## Min. : 9.00 Min. :3.000 Min. : 68.0 Min. : 46.0 Min. :1613
## 1st Qu.:17.50 1st Qu.:4.000 1st Qu.:104.0 1st Qu.: 75.0 1st Qu.:2223
## Median :23.00 Median :4.000 Median :146.0 Median : 93.5 Median :2800
## Mean :23.52 Mean :5.458 Mean :193.5 Mean :104.5 Mean :2970
## 3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:262.0 3rd Qu.:126.0 3rd Qu.:3609
## Max. :46.60 Max. :8.000 Max. :455.0 Max. :230.0 Max. :5140
## NA's :5
## acceleration year origin name
## Min. : 8.00 Min. :70.00 Min. :1.000 ford pinto : 6
## 1st Qu.:13.80 1st Qu.:73.00 1st Qu.:1.000 amc matador : 5
## Median :15.50 Median :76.00 Median :1.000 ford maverick : 5
## Mean :15.56 Mean :75.99 Mean :1.574 toyota corolla: 5
## 3rd Qu.:17.10 3rd Qu.:79.00 3rd Qu.:2.000 amc gremlin : 4
## Max. :24.80 Max. :82.00 Max. :3.000 amc hornet : 4
## (Other) :368
summary(mpg) # One value
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 9.00 17.50 23.00 23.52 29.00 46.60