ISLR Home
library(ISLR)
5.3.1 Validation Set Approach
attach(Auto)
set.seed(1)
train = sample(392,196) # 1..392 - Take 196 i.e. Half
lm.fit = lm(mpg~horsepower, data = Auto, subset = train)
mean((Auto$mpg-predict(lm.fit,Auto))[-train]^2) # 25.569
## [1] 23.26601
^2
lm.fit2=lm(Auto$mpg~poly(Auto$horsepower ,2),data=Auto,subset=train)
mean((Auto$mpg-predict(lm.fit2,Auto))[-train]^2) # 20.9
## [1] 18.71646
^3
lm.fit3=lm(Auto$mpg~poly(Auto$horsepower ,3),data=Auto,subset=train)
mean((mpg-predict(lm.fit3,Auto))[-train]^2) # 20.87186
## [1] 18.79401
Choose different training set
Get different means
set.seed (2)
train=sample(392,196)
lm.fit=lm(mpg~horsepower ,subset=train)
mean((Auto$mpg-predict(lm.fit,Auto))[-train]^2) #
## [1] 25.72651
^2
lm.fit2=lm(Auto$mpg~poly(Auto$horsepower ,2),data=Auto,subset=train)
mean((Auto$mpg-predict(lm.fit2,Auto))[-train]^2) # Still best
## [1] 20.43036
^3
lm.fit3=lm(Auto$mpg~poly(Auto$horsepower ,3),data=Auto,subset=train)
mean((mpg-predict(lm.fit3,Auto))[-train]^2) #
## [1] 20.38533
5.3.2 Leave-One-Out Cross-Validation
glm.fit=glm(mpg~horsepower ,data=Auto)
coef(glm.fit) # Same as lm.fit
## (Intercept) horsepower
## 39.9358610 -0.1578447
lm.fit=lm(mpg~horsepower ,data=Auto)
coef(lm.fit)
## (Intercept) horsepower
## 39.9358610 -0.1578447
library(boot) # cv.glm()
glm.fit=glm(mpg~horsepower ,data=Auto)
coef(glm.fit)
## (Intercept) horsepower
## 39.9358610 -0.1578447
cv.err=cv.glm(Auto,glm.fit)
# correspond to the LOOCV statistic given in (5.1)
cv.err$delta # cross-validation results
## [1] 24.23151 24.23114
cv.error=rep(0,5) # 5 zeros
for (i in 1:5) {
print(i)
glm.fit=glm(mpg~poly(horsepower, i),data=Auto)
cv.error[i]=cv.glm(Auto,glm.fit)$delta[1]
}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
cv.error
## [1] 24.23151 19.24821 19.33498 19.42443 19.03321
set.seed(17)
cv.error=rep(0,10) # 10 zeros
for (i in 1:10) {
print(i)
glm.fit=glm(mpg~poly(horsepower, i),data=Auto)
cv.error[i]=cv.glm(Auto,glm.fit, K = 10)$delta[1]
}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
cv.error
## [1] 24.27207 19.26909 19.34805 19.29496 19.03198 18.89781 19.12061 19.14666
## [9] 18.87013 20.95520
5.3.4 The Bootstrap
# Formula (5.7)
alpha.fn=function(data,index) {
X=data$X[index]
Y=data$Y[index]
return((var(Y)-cov(X,Y))/(var(X)+var(Y)-2*cov(X,Y)))
}
#View(Portfolio)
# Portfolio data
alpha.fn(Portfolio, 1:100) # 0.5758321
## [1] 0.5758321
set.seed(1)
alpha.fn(Portfolio,sample(100,100,replace=T)) # 0.7368375 WRONG!
## [1] 0.7368375
# 0.596
boot(Portfolio, alpha.fn, R=1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Portfolio, statistic = alpha.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 0.5758321 -0.001695873 0.09366347
# Estimating the Accuracy of a Linear Regression Model ####
boot.fn=function(data,index) return(coef(lm(mpg~horsepower, data=data,subset=index)))
boot.fn(Auto ,1:392)
## (Intercept) horsepower
## 39.9358610 -0.1578447
set.seed(1)
boot.fn(Auto,sample(392,392,replace=T))
## (Intercept) horsepower
## 40.3404517 -0.1634868
boot.fn(Auto,sample(392,392,replace=T))
## (Intercept) horsepower
## 40.1186906 -0.1577063
boot(Auto, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Auto, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 39.9358610 0.0544513229 0.841289790
## t2* -0.1578447 -0.0006170901 0.007343073
summary(lm(mpg~horsepower ,data=Auto))$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.9358610 0.717498656 55.65984 1.220362e-187
## horsepower -0.1578447 0.006445501 -24.48914 7.031989e-81
Another boot fn
boot.fn=function(data,index) coefficients(lm(mpg~horsepower+I(horsepower^2),data=data, subset=index))
set.seed(1)
boot(Auto, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Auto, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 56.900099702 3.511640e-02 2.0300222526
## t2* -0.466189630 -7.080834e-04 0.0324241984
## t3* 0.001230536 2.840324e-06 0.0001172164
summary(lm(mpg~horsepower+I(horsepower^2),data=Auto))$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 56.900099702 1.8004268063 31.60367 1.740911e-109
## horsepower -0.466189630 0.0311246171 -14.97816 2.289429e-40
## I(horsepower^2) 0.001230536 0.0001220759 10.08009 2.196340e-21