p407

library(ISLR)

Get Data

nci.labs=NCI60$labs
nci.data=NCI60$data
dim(nci.data) # 64 rows and 6,830 columns
## [1]   64 6830

Examine cancer types for the cell lines

nci.labs[1:4]
## [1] "CNS"   "CNS"   "CNS"   "RENAL"
table(nci.labs)
## nci.labs
##      BREAST         CNS       COLON K562A-repro K562B-repro    LEUKEMIA 
##           7           5           7           1           1           6 
## MCF7A-repro MCF7D-repro    MELANOMA       NSCLC     OVARIAN    PROSTATE 
##           1           1           8           9           6           2 
##       RENAL     UNKNOWN 
##           9           1

PCA on the NCI60 Data

pr.out=prcomp(nci.data, scale=TRUE)

Function will be used to assign a color to each of the 64 cell lines, based on the cancer type to which it corresponds.

Cols=function(vec){
  cols=rainbow(length(unique(vec)))
  return(cols[as.numeric(as.factor(vec))])
}

Plot the first few principal component score vectors

par(mfrow=c(1,2))
plot(pr.out$x[,1:2], col=Cols(nci.labs), pch=19, xlab="Z1", ylab="Z2")
plot(pr.out$x[,c(1,3)], col=Cols(nci.labs), pch=19, xlab="Z1", ylab="Z3")

On the whole, cell lines corresponding to a single cancer type do tend to have similar values on the first few principal component score vectors. summary of the proportion of variance explained (PVE)

Summary

summary(pr.out)
## Importance of components:
##                            PC1      PC2      PC3      PC4      PC5      PC6
## Standard deviation     27.8535 21.48136 19.82046 17.03256 15.97181 15.72108
## Proportion of Variance  0.1136  0.06756  0.05752  0.04248  0.03735  0.03619
## Cumulative Proportion   0.1136  0.18115  0.23867  0.28115  0.31850  0.35468
##                             PC7      PC8      PC9     PC10     PC11     PC12
## Standard deviation     14.47145 13.54427 13.14400 12.73860 12.68672 12.15769
## Proportion of Variance  0.03066  0.02686  0.02529  0.02376  0.02357  0.02164
## Cumulative Proportion   0.38534  0.41220  0.43750  0.46126  0.48482  0.50646
##                            PC13     PC14     PC15     PC16     PC17     PC18
## Standard deviation     11.83019 11.62554 11.43779 11.00051 10.65666 10.48880
## Proportion of Variance  0.02049  0.01979  0.01915  0.01772  0.01663  0.01611
## Cumulative Proportion   0.52695  0.54674  0.56590  0.58361  0.60024  0.61635
##                            PC19    PC20     PC21    PC22    PC23    PC24
## Standard deviation     10.43518 10.3219 10.14608 10.0544 9.90265 9.64766
## Proportion of Variance  0.01594  0.0156  0.01507  0.0148 0.01436 0.01363
## Cumulative Proportion   0.63229  0.6479  0.66296  0.6778 0.69212 0.70575
##                           PC25    PC26    PC27   PC28    PC29    PC30    PC31
## Standard deviation     9.50764 9.33253 9.27320 9.0900 8.98117 8.75003 8.59962
## Proportion of Variance 0.01324 0.01275 0.01259 0.0121 0.01181 0.01121 0.01083
## Cumulative Proportion  0.71899 0.73174 0.74433 0.7564 0.76824 0.77945 0.79027
##                           PC32    PC33    PC34    PC35    PC36    PC37    PC38
## Standard deviation     8.44738 8.37305 8.21579 8.15731 7.97465 7.90446 7.82127
## Proportion of Variance 0.01045 0.01026 0.00988 0.00974 0.00931 0.00915 0.00896
## Cumulative Proportion  0.80072 0.81099 0.82087 0.83061 0.83992 0.84907 0.85803
##                           PC39    PC40    PC41   PC42    PC43   PC44    PC45
## Standard deviation     7.72156 7.58603 7.45619 7.3444 7.10449 7.0131 6.95839
## Proportion of Variance 0.00873 0.00843 0.00814 0.0079 0.00739 0.0072 0.00709
## Cumulative Proportion  0.86676 0.87518 0.88332 0.8912 0.89861 0.9058 0.91290
##                          PC46    PC47    PC48    PC49    PC50    PC51    PC52
## Standard deviation     6.8663 6.80744 6.64763 6.61607 6.40793 6.21984 6.20326
## Proportion of Variance 0.0069 0.00678 0.00647 0.00641 0.00601 0.00566 0.00563
## Cumulative Proportion  0.9198 0.92659 0.93306 0.93947 0.94548 0.95114 0.95678
##                           PC53    PC54    PC55    PC56    PC57   PC58    PC59
## Standard deviation     6.06706 5.91805 5.91233 5.73539 5.47261 5.2921 5.02117
## Proportion of Variance 0.00539 0.00513 0.00512 0.00482 0.00438 0.0041 0.00369
## Cumulative Proportion  0.96216 0.96729 0.97241 0.97723 0.98161 0.9857 0.98940
##                           PC60    PC61    PC62    PC63      PC64
## Standard deviation     4.68398 4.17567 4.08212 4.04124 2.148e-14
## Proportion of Variance 0.00321 0.00255 0.00244 0.00239 0.000e+00
## Cumulative Proportion  0.99262 0.99517 0.99761 1.00000 1.000e+00

Plot the variance explained by the first few principal components

plot(pr.out, main="Variance Explained")

The height of each bar in the bar plot is given by squaring the corresponding element of pr.out$sdev.

It is more informative to plot the PVE of each principal component (i.e. a scree plot) and the cumulative PVE of each principal component.

pve=100*pr.out$sdev^2/sum(pr.out$sdev^2)
par(mfrow=c(1,2))
plot(pve, type="o", ylab="PVE", xlab="Principal Component", col =" blue ")
plot(cumsum(pve), type="o", ylab="Cumulative PVE", xlab="Principal Component ", col =" brown3 ")

Clustering the Observations of the NCI60 Data

this step is optional and should be performed only if we want each gene to be on the same scale.

sd.data=scale(nci.data)

Perform hierarchical clustering of the observations using complete, single, and average linkage. Euclidean distance is used as the dissimilarity measure.

par(mfrow=c(3,1))
data.dist=dist(sd.data)
plot(hclust(data.dist), labels=nci.labs, main="Complete Linkage", xlab="", sub="",ylab="")
plot(hclust(data.dist, method="average"), labels=nci.labs, main="Average Linkage", xlab="", sub="",ylab="")
plot(hclust(data.dist, method="single"), labels=nci.labs, main="Single Linkage", xlab="", sub="",ylab="")

Complete and average linkage tend to yield evenly sized clusters whereas single linkage tends to yield extended clusters to which single leaves are fused one by one.

Cut height to 4

cut the dendrogram at the height that will yield a particular number of clusters

hc.out=hclust(dist(sd.data))
hc.clusters=cutree(hc.out,4)
table(hc.clusters,nci.labs)
##            nci.labs
## hc.clusters BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA MCF7A-repro
##           1      2   3     2           0           0        0           0
##           2      3   2     0           0           0        0           0
##           3      0   0     0           1           1        6           0
##           4      2   0     5           0           0        0           1
##            nci.labs
## hc.clusters MCF7D-repro MELANOMA NSCLC OVARIAN PROSTATE RENAL UNKNOWN
##           1           0        8     8       6        2     8       1
##           2           0        0     1       0        0     1       0
##           3           0        0     0       0        0     0       0
##           4           1        0     0       0        0     0       0

All the leukemia cell lines fall in cluster 3, while the breast cancer cell lines are spread out over three different clusters.

Dendrogram

par(mfrow=c(1,1))
plot(hc.out, labels=nci.labs)
abline(h=139, col="red")

Printing the output of hclust gives a useful brief summary of the object

hc.out
## 
## Call:
## hclust(d = dist(sd.data))
## 
## Cluster method   : complete 
## Distance         : euclidean 
## Number of objects: 64

Commpare kmeans and hierarchical clustering

How do these NCI60 hierarchical clustering results compare to what we get if we perform K-means clustering with K = 4?

set.seed(2)
km.out=kmeans(sd.data, 4, nstart=20)
km.clusters=km.out$cluster
table(km.clusters, hc.clusters )
##            hc.clusters
## km.clusters  1  2  3  4
##           1 11  0  0  9
##           2 20  7  0  0
##           3  9  0  0  0
##           4  0  0  8  0

We see that the four clusters obtained using hierarchical clustering and K-means clustering are somewhat different

Cluster 2 in K-means clustering is identical to cluster 3 in hierarchical clustering. However, the other clusters differ: for instance, cluster 4 in K-means clustering contains a portion of the observations assigned to cluster 1 by hierarchical clustering, as well as all of the observations assigned to cluster 2 by hierarchical clustering.

Perform hierarchical clustering on first few principal component score vectors

hc.out=hclust(dist(pr.out$x[,1:5]))
plot(hc.out, labels=nci.labs, main="Hier. Clust. on First Five Score Vectors")

table(cutree(hc.out,4), nci.labs)
##    nci.labs
##     BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA MCF7A-repro MCF7D-repro
##   1      0   2     7           0           0        2           0           0
##   2      5   3     0           0           0        0           0           0
##   3      0   0     0           1           1        4           0           0
##   4      2   0     0           0           0        0           1           1
##    nci.labs
##     MELANOMA NSCLC OVARIAN PROSTATE RENAL UNKNOWN
##   1        1     8       5        2     7       0
##   2        7     1       1        0     2       1
##   3        0     0       0        0     0       0
##   4        0     0       0        0     0       0