p407
library(ISLR)nci.labs=NCI60$labs
nci.data=NCI60$data
dim(nci.data) # 64 rows and 6,830 columns## [1]   64 6830nci.labs[1:4]## [1] "CNS"   "CNS"   "CNS"   "RENAL"table(nci.labs)## nci.labs
##      BREAST         CNS       COLON K562A-repro K562B-repro    LEUKEMIA 
##           7           5           7           1           1           6 
## MCF7A-repro MCF7D-repro    MELANOMA       NSCLC     OVARIAN    PROSTATE 
##           1           1           8           9           6           2 
##       RENAL     UNKNOWN 
##           9           1pr.out=prcomp(nci.data, scale=TRUE)Function will be used to assign a color to each of the 64 cell lines, based on the cancer type to which it corresponds.
Cols=function(vec){
  cols=rainbow(length(unique(vec)))
  return(cols[as.numeric(as.factor(vec))])
}par(mfrow=c(1,2))
plot(pr.out$x[,1:2], col=Cols(nci.labs), pch=19, xlab="Z1", ylab="Z2")
plot(pr.out$x[,c(1,3)], col=Cols(nci.labs), pch=19, xlab="Z1", ylab="Z3")On the whole, cell lines corresponding to a single cancer type do tend to have similar values on the first few principal component score vectors. summary of the proportion of variance explained (PVE)
summary(pr.out)## Importance of components:
##                            PC1      PC2      PC3      PC4      PC5      PC6
## Standard deviation     27.8535 21.48136 19.82046 17.03256 15.97181 15.72108
## Proportion of Variance  0.1136  0.06756  0.05752  0.04248  0.03735  0.03619
## Cumulative Proportion   0.1136  0.18115  0.23867  0.28115  0.31850  0.35468
##                             PC7      PC8      PC9     PC10     PC11     PC12
## Standard deviation     14.47145 13.54427 13.14400 12.73860 12.68672 12.15769
## Proportion of Variance  0.03066  0.02686  0.02529  0.02376  0.02357  0.02164
## Cumulative Proportion   0.38534  0.41220  0.43750  0.46126  0.48482  0.50646
##                            PC13     PC14     PC15     PC16     PC17     PC18
## Standard deviation     11.83019 11.62554 11.43779 11.00051 10.65666 10.48880
## Proportion of Variance  0.02049  0.01979  0.01915  0.01772  0.01663  0.01611
## Cumulative Proportion   0.52695  0.54674  0.56590  0.58361  0.60024  0.61635
##                            PC19    PC20     PC21    PC22    PC23    PC24
## Standard deviation     10.43518 10.3219 10.14608 10.0544 9.90265 9.64766
## Proportion of Variance  0.01594  0.0156  0.01507  0.0148 0.01436 0.01363
## Cumulative Proportion   0.63229  0.6479  0.66296  0.6778 0.69212 0.70575
##                           PC25    PC26    PC27   PC28    PC29    PC30    PC31
## Standard deviation     9.50764 9.33253 9.27320 9.0900 8.98117 8.75003 8.59962
## Proportion of Variance 0.01324 0.01275 0.01259 0.0121 0.01181 0.01121 0.01083
## Cumulative Proportion  0.71899 0.73174 0.74433 0.7564 0.76824 0.77945 0.79027
##                           PC32    PC33    PC34    PC35    PC36    PC37    PC38
## Standard deviation     8.44738 8.37305 8.21579 8.15731 7.97465 7.90446 7.82127
## Proportion of Variance 0.01045 0.01026 0.00988 0.00974 0.00931 0.00915 0.00896
## Cumulative Proportion  0.80072 0.81099 0.82087 0.83061 0.83992 0.84907 0.85803
##                           PC39    PC40    PC41   PC42    PC43   PC44    PC45
## Standard deviation     7.72156 7.58603 7.45619 7.3444 7.10449 7.0131 6.95839
## Proportion of Variance 0.00873 0.00843 0.00814 0.0079 0.00739 0.0072 0.00709
## Cumulative Proportion  0.86676 0.87518 0.88332 0.8912 0.89861 0.9058 0.91290
##                          PC46    PC47    PC48    PC49    PC50    PC51    PC52
## Standard deviation     6.8663 6.80744 6.64763 6.61607 6.40793 6.21984 6.20326
## Proportion of Variance 0.0069 0.00678 0.00647 0.00641 0.00601 0.00566 0.00563
## Cumulative Proportion  0.9198 0.92659 0.93306 0.93947 0.94548 0.95114 0.95678
##                           PC53    PC54    PC55    PC56    PC57   PC58    PC59
## Standard deviation     6.06706 5.91805 5.91233 5.73539 5.47261 5.2921 5.02117
## Proportion of Variance 0.00539 0.00513 0.00512 0.00482 0.00438 0.0041 0.00369
## Cumulative Proportion  0.96216 0.96729 0.97241 0.97723 0.98161 0.9857 0.98940
##                           PC60    PC61    PC62    PC63      PC64
## Standard deviation     4.68398 4.17567 4.08212 4.04124 2.148e-14
## Proportion of Variance 0.00321 0.00255 0.00244 0.00239 0.000e+00
## Cumulative Proportion  0.99262 0.99517 0.99761 1.00000 1.000e+00plot(pr.out, main="Variance Explained")The height of each bar in the bar plot is given by squaring the corresponding element of pr.out$sdev.
It is more informative to plot the PVE of each principal component (i.e. a scree plot) and the cumulative PVE of each principal component.
pve=100*pr.out$sdev^2/sum(pr.out$sdev^2)
par(mfrow=c(1,2))
plot(pve, type="o", ylab="PVE", xlab="Principal Component", col =" blue ")
plot(cumsum(pve), type="o", ylab="Cumulative PVE", xlab="Principal Component ", col =" brown3 ")this step is optional and should be performed only if we want each gene to be on the same scale.
sd.data=scale(nci.data)Perform hierarchical clustering of the observations using complete, single, and average linkage. Euclidean distance is used as the dissimilarity measure.
par(mfrow=c(3,1))
data.dist=dist(sd.data)
plot(hclust(data.dist), labels=nci.labs, main="Complete Linkage", xlab="", sub="",ylab="")
plot(hclust(data.dist, method="average"), labels=nci.labs, main="Average Linkage", xlab="", sub="",ylab="")
plot(hclust(data.dist, method="single"), labels=nci.labs, main="Single Linkage", xlab="", sub="",ylab="")Complete and average linkage tend to yield evenly sized clusters whereas single linkage tends to yield extended clusters to which single leaves are fused one by one.
cut the dendrogram at the height that will yield a particular number of clusters
hc.out=hclust(dist(sd.data))
hc.clusters=cutree(hc.out,4)
table(hc.clusters,nci.labs)##            nci.labs
## hc.clusters BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA MCF7A-repro
##           1      2   3     2           0           0        0           0
##           2      3   2     0           0           0        0           0
##           3      0   0     0           1           1        6           0
##           4      2   0     5           0           0        0           1
##            nci.labs
## hc.clusters MCF7D-repro MELANOMA NSCLC OVARIAN PROSTATE RENAL UNKNOWN
##           1           0        8     8       6        2     8       1
##           2           0        0     1       0        0     1       0
##           3           0        0     0       0        0     0       0
##           4           1        0     0       0        0     0       0All the leukemia cell lines fall in cluster 3, while the breast cancer cell lines are spread out over three different clusters.
par(mfrow=c(1,1))
plot(hc.out, labels=nci.labs)
abline(h=139, col="red")Printing the output of hclust gives a useful brief summary of the object
hc.out## 
## Call:
## hclust(d = dist(sd.data))
## 
## Cluster method   : complete 
## Distance         : euclidean 
## Number of objects: 64How do these NCI60 hierarchical clustering results compare to what we get if we perform K-means clustering with K = 4?
set.seed(2)
km.out=kmeans(sd.data, 4, nstart=20)
km.clusters=km.out$cluster
table(km.clusters, hc.clusters )##            hc.clusters
## km.clusters  1  2  3  4
##           1 11  0  0  9
##           2 20  7  0  0
##           3  9  0  0  0
##           4  0  0  8  0We see that the four clusters obtained using hierarchical clustering and K-means clustering are somewhat different
Cluster 2 in K-means clustering is identical to cluster 3 in hierarchical clustering. However, the other clusters differ: for instance, cluster 4 in K-means clustering contains a portion of the observations assigned to cluster 1 by hierarchical clustering, as well as all of the observations assigned to cluster 2 by hierarchical clustering.
hc.out=hclust(dist(pr.out$x[,1:5]))
plot(hc.out, labels=nci.labs, main="Hier. Clust. on First Five Score Vectors")table(cutree(hc.out,4), nci.labs)##    nci.labs
##     BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA MCF7A-repro MCF7D-repro
##   1      0   2     7           0           0        2           0           0
##   2      5   3     0           0           0        0           0           0
##   3      0   0     0           1           1        4           0           0
##   4      2   0     0           0           0        0           1           1
##    nci.labs
##     MELANOMA NSCLC OVARIAN PROSTATE RENAL UNKNOWN
##   1        1     8       5        2     7       0
##   2        7     1       1        0     2       1
##   3        0     0       0        0     0       0
##   4        0     0       0        0     0       0