library(tidyverse)
library(ggplot2)
data(iris)
myPlot <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point() +
theme_bw()
myPlot
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, shape = Species)) +
geom_point() +
theme_bw()
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
geom_point() +
theme_bw()
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
facet_wrap(~ Species) +
geom_point() +
theme_bw()
We use this data for various maps.
listOfNumerics <- list(a = rnorm(5),
b = rnorm(9),
c = rnorm(10))
listOfNumerics
## $a
## [1] 0.0826785 0.7690771 -0.5622437 -0.4805259 0.3639989
##
## $b
## [1] -1.2680962 2.5861386 0.8318649 -0.8834166 0.1528102 0.3895827 1.5991114
## [8] -1.5752840 -2.7172683
##
## $c
## [1] 0.4837824 -0.4719966 -0.1895478 -1.0276589 1.3135611 -0.4475964
## [7] -0.6413699 1.0267952 1.6636854 -0.6143755
iterate simultaneously over multiple lists
multipliers <- list(0.5, 10, 3)
map2(.x = listOfNumerics, .y = multipliers, ~.x * .y)
## $a
## [1] 0.04133925 0.38453857 -0.28112185 -0.24026294 0.18199946
##
## $b
## [1] -12.680962 25.861386 8.318649 -8.834166 1.528102 3.895827 15.991114
## [8] -15.752840 -27.172683
##
## $c
## [1] 1.4513471 -1.4159898 -0.5686433 -3.0829766 3.9406832 -1.3427891
## [7] -1.9241096 3.0803856 4.9910563 -1.8431264
Note that the echo = FALSE
parameter was added to the code chunk to prevent printing of the R code that generated the plot.
Iterate over each column of a dataframe.